Storossproject.ru

Декор и Мебель
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формула цемента с водой

ЛЕКЦИЯ 3.

ТЕОРИЯ ТВЕРДЕНИЯ ЦЕМЕНТА. СТРУКТУРА ЦЕМЕНТНОГО КАМНЯ.

Вопросы: Фазы цементного клинкера Теория твердения Ле Шателье Теория твердения В.Михаэлиса Теория твердения А.А.Байкова Современные теории твердения Структура цементного камня.

Фазовый состав продуктов гидратации Технология получения портландцемента

Процесс превращения порошкообразного вяжущего в камневидное тело очень сложен, включает в себя не только химические превращения, но также физико-химические процессы

– растворение, образование новой фазы, коагуляцию, кристаллизацию.

Фазы цементного клинкера

Трехкальциевый силикат (алит ) —

главный минерал цементного клинкера — обладает большой активностью в реакции с водой, особенно в начальные сроки (величина тепловыделения к 3 сут достигает примерно 2/з от тепловыделения при полной гидратации). Алит быстро твердеет и набирает высокую прочность .

(белит ) значительно менее

активен, чем алит. Тепловыделение белита при полной гидратации примерно в 2 раза меньше, чем у алита, и к 3 сут составляет около 10 % от тепловыделения при полной гидратации. Твердение белита происходит медленно. К месячному сроку продукт его твердения обладает сравнительно невысокой прочностью, но при длительном твердении (несколько лет) в благоприятных условиях (при положительной температуре и влажной среде) его прочность неуклонно возрастает.

Трехкальциевый алюминат — самый активный

клинкерный минерал, отличающийся быстрым взаимодействием с водой. Его тепловыделение при полной гидратации почти в 2 раза больше, чем у алита, а за 3 сут составляет не менее 80 % от общего тепловыделения. Однако продукт его твердения имеет повышенную пористость, низкие прочность и долговечность. Быстрое твердение С3А вызывает раннее структурообразование в цементном тесте и сильно ускоряет сроки схватывания (всего до нескольких минут).

Четырехкальциевый алюмоферрит характеризуется умеренным

тепловыделением и по быстроте твердения занимает промежуточное положение между трехкальциевым и двухкальциевым силикатами. Прочность продуктов его гидратации в ранние сроки ниже, чем у алита, и несколько выше, чем у белита.

Гидратация цемента — химическая реакция клинкерных составляющих цемента с водой (присоединение воды); образуются твердые новообразования ( гидраты ), которые заполняют первоначально залитый цементом и водой объём плотным наслоением гелевых частиц, вызывая тем самым упрочнение. Первоначально жидкий или пластичный, цементный клей превращается в результате гидратации в цементный камень. Первая стадия этого процесса называется загустеванием, или схватыванием, дальнейшая — упрочнением, или твердением.

Кристаллизационная теория. Свою теорию Ле Шателье опубликовал в 1887 г.

Согласно этой теории, клинкерные минералы обладают более высокой растворимостью в воде, чем продукты их гидратации, а поэтому при затворении цемента водой из жидкой фазы цементно- водной суспензии выделяются соответствующие кристаллогидраты. Процесс кристаллизации будет продолжаться до тех пор, пока весь цемент не прореагирует с водой.

Основное положение теории Ле Шателье — гидратация цемента происходит через раствор — является исходным в большинстве современных теорий твердения минеральных вяжущих веществ

Коллоидная теория . Михаэлис впервые опубликовал в 1893 г.

Он полагал, что при взаимодействии цемента с водой образуются гидрогели силикатов, алюминатов и ферритов кальция. На начальной стадии твердения цемента образующиеся гидрогели содержат много воды. С течением времени количество воды в гидрогелях уменьшается в результате «внутреннего отсасывания» ее на дальнейшую гидратацию центральных слоев цементных зерен, вследствие чего повышается прочность и плотность цементного камня.

По теории Михаэлиса, в результате взаимодействия цемента с водой образуется дисперсная коллоидная система — гель, прочность которого возрастает по мере его уплотнения вследствие частичной дегидратации.

Объединенная коллоидно – химическая теория .

Согласно теории академика А.А.Байкова (1927 г.) — в процессе схватывания и твердения минеральных вяжущих веществ выделяются три периода:

а) подготовительный, или период растворения; б) стадию коллоидации (стадия гидратации);

в) период кристаллизации (образование кристаллического сростка).

На стадии коллоидации, когда жидкая фаза цементно-водной суспензии представляет собой насыщенный по отношению к клинкерным минералам раствор, протекают реакции гидратации клинкерных минералов в твердой фазе, т. е. молекулы воды проникают в кристаллические решетки исходных клинкерных фаз, и происходит «непосредственное образование продуктов реакции в твердом состоянии без промежуточного растворения исходного вяжущего».

Если новообразования обладают некоторой растворимостью, то коллоидная система (гель) является неустойчивой и путем последовательного растворения коллоидных частиц и кристаллизации из жидкой фазы соответствующих кристаллогидратов образует кристаллическую структуру.

Читайте так же:
Как замешать цемент 500

Главное положение теории А. А. Байкова — возможность значительной части вяжущего гидратироваться по топохимической схеме.

Современная теория твердения

Гидратация как пространственный процесс

1. Цементные частицы в виде дробленых зерен окружены водой затворения, объём которой относительно велик (50—70 объёмных процентов).

2. Этот объём заполняется новообразованиями, чтобы возникла прочная структура (цементный камень). Через 8—10 часов весь объём между постепенно уменьшающимися зернами цемента заполнен скелетом иглообразных кристаллов. Его также называют «алюминатной структурой», так как он возникает из 3CaO*Al 2 O 3 .

3. В оставшихся пустотах возникают одновременно продукты гидратации клинкерных минералов 2(3CaO*SiO 2 ) и

2(2CaO*SiO 2 ). Последние образуют

силикатную структуру.. Она становится носителем прочности цементного камня и приблизительно через сутки начинает вытеснять алюминатную структуру.

4. Через 28 суток обнаруживается только силикатная структура. Возникновение продуктов гидратации рассматривают как гелеобразование, а продукты гидратации — как гель.

5. Для полной гидратации цементного зерна необходимо присутствие 0,4-кратного (по массе) количества воды. Из неё только 60 % (то есть 0,25 массы цемента) связывается химически. Остальные 40 % исходной воды остаются слабо связанными в порах геля. Размер гелевых пор около 3-10 мм.

Элементы структуры цементного камня.

-продукты гидратации : кристаллогидраты, тобермаритовый гель;

— не до конца гидратированные зерна цемента;

Гидратация как химический процесс

Безводные минералы клинкера при реакции с водой превращаются в гидросиликаты, гидроаллюминаты и гидроферраты кальция.

Образовавшийся Ca(OH) 2 под

действием CO 2 воздуха

гидроаллюминаты кальция с гипсом в присутствии воды дают двойные основные сульфаты, например Ca 6 Al 2 (OH) 12 (SO 4 ) 3 *26H 2 O и Ca 4 Al 2 (OH) 12 SO 4 *6H 2 O При получении бетона

образовавшийся Ca(OH) 2 с CO 2 воздуха и SiO 2 превращается в очень прочную массу, состоящую из карбонатов и силикатов кальция.

Рентгенофазовый анализ продуктов гидратации

1- прочность; 2- рН; 3- степень гидратации; 4- тепловыделения; 5- электропроводность; 6- пористость

Термокинетическая теория гидратации С 3 S

a – кривые скорости выделения теплоты при гидратации.

I, II, III, IV – стадии гидратации.

б – процесс накопления продуктов гидратации в – схема структурообразования.

1- частица С 3 S

2- первичная оболочка из гидратных фаз 3 – зародыши крупных кристаллов

под оболочкой 4 – тонкозернистые гидратные фазы

Как происходит процесс затвердевания бетона

В своей самой простой форме бетон — это смесь пасты и наполнителей. Паста, сделанная из портланд-цемента и воды, покрывает поверхность наполнителя. Во время химической реакции под названием «гидратация», паста затвердевает и «набирает силу», формируя камнеподобный материал, известный как бетон.

В этом процессе и заключается отличительная особенность бетона: он пластичен и гибок, когда только что смешан, и надежен и прочен после затвердевания. Это объясняет, почему из одного материала — бетона — строят небоскребы, мосты, тротуары, суперхайвеи, дома и дамбы.

Пропорции материалов в бетоне

Ключ к изготовлению надежного, крепкого бетона — тщательный подбор пропорций и смешивание материала. Смесь, в которой недостаточно пасты, чтобы заполнить всю пустоту между частицами наполнителя, будет трудно размещать, она даст неровные поверхности и пористый бетон. Смесь с переизбытком цемента размещать будет легко, а ее поверхность будет гладкой; однако в результате бетон не оправдает свою стоимость и будет легко трескаться.

Химия портланд-цемента начинает действовать в присутствии воды. Цемент и вода формируют пасту, покрывающую каждую частицу наполнителей — камней и песка. В результате бетон затвердевает и становится крепче.

Качество пасты определяет характеристики бетона. Прочность пасты, в свою очередь, зависит от отношения воды к цементу. Оно рассчитывается делением веса воды на вес цемента. Для получения хорошего бетона нужно понизить это отношение насколько возможно, не жертвуя при этом «работоспособностью» свежего бетона, позволяющей ему должным образом размещаться, схватываться и выравниваться.

Подобранная как следует смесь обладает желаемой гибкостью в свежем виде и надежностью в затвердевшем. Обычно смесь состоит из 15% цемента, 60-75% наполнителей и 15-20% воды. Также она может содержать 5-8% воздуха.

Другие ингредиенты

Почти любая природная питьевая вода без ярко выраженного вкуса и запаха может использоваться как компонент для бетона. Излишние примеси не только могут повлиять на время схватывания и прочность бетона, но и привести к изменению его цвета, пятнам, коррозии арматуры, нестабильности объема и уменьшению прочности. В требованиях к бетонным смесям также установлены ограничения на хлориды, сульфаты, алкалиды и твердые частицы в воде для тех случаев, когда определить влияние примесей на бетон невозможно с помощью тестов.

Читайте так же:
Гравийно песчаная смесь укрепленная цементом

Хотя почти любая питьевая вода подходит для бетонных смесей, наполнители выбирают очень тщательно. Они составляют 60-70% общего объема бетона. Тип и размер используемых наполнителей зависит от плотности и цели конечной бетонной продукции.

Процесс гидратации бетона

Вскоре после того, как наполнители, вода и цемент соединяются, смесь начинает затвердевать. Все портланд-цементы — гидравлические. Они затвердевают благодаря гидратации — химической реакции с водой. При этой реакции на поверхности каждой частицы цемента формируется узел. Он растет и расширяется, пока не связывается с узлами других цементных частиц или близлежащим куском наполнителя.

Когда бетон тщательно перемешан и готов к использованию, его нужно поместить туда, где смесь затвердеет.

При размещении бетон закрепляют, чтобы лучше заполнить форму и чтобы избавиться от потенциальных недостатков, таких, как «соты» и «воздушные карманы».

Для брусков бетон оставляют до тех пор, пока влажная пленка на поверхности исчезнет, после чего его выравнивают специальным деревянным или металлическим «поплавком». Это дает относительно гладкую, но слегка шершавую текстуру, которая не скользит и зачастую является конечной стадией для строительного бетонного бруса. Если же требуется совсем гладкая, твердая, плотная поверхность, после этого его разглаживают стальным мастерком.

Уход за бетоном нужно начинать, когда поверхность достаточно затвердела, чтобы сопротивляться повреждениям. Он помогает убедиться, что гидратация продолжается и цемент все еще набирает силу. Бетонные поверхности обрызгивают водой или используют влагосохраняющие ткани, такие как брезент или хлопок. Другие методы ухода предотвращают испарение воды, запечатывая поверхность пластиковыми или другими специальными спреями, называемыми «смеси для ухода».

Специальные технологии ухода используются при экстремально жаркой или холодной погоде, чтобы защитить бетон. Чем дольше он остается влажным, тем сильнее и прочнее он станет. Время затвердевания зависит от состава и однородности цемента, пропорций смешивания и температурных условий. В основном, гидратация и затвердевание бетона происходит в первый месяц жизненного цикла бетона, но он продолжает гидрироваться на протяжении многих лет, хоть и медленнее.

Влияние характеристик песка на свойства бетона

Качество бетонных конструкций, качественное устройство бетонных полов в первую очередь зависит от свойств применяемого бетона. Рассмотрим, как влияют характеристики песка на конечные свойства бетона.

Песок характеризуется следующими паспортными характеристиками:

  • Модуль крупности;
  • Насыпная плотность;
  • Содержание глинистых и пылевидных частиц.

Вспомогательным параметром, для дальнейшего изложения, является собственная плотность песка. Так как речной песок состоит на 95% из кварцевого песка, то можно считать, что собственная плотность равна плотности диоксида кремния Пс = 2,7 т/м 3 .

Суть изготовления любого бетона заключается в заполнении пустот между частицами наполнителя клеевой массой. Для портландцементбетонов клеевой массой является цементное тесто. В процессе заполнения пустотности консистенция бетона меняется от влажной до текучей. На конечную прочность бетона влияет как собственные прочности наполнителей, так и прочность «клея» — созревшего цементного камня. Прочность цементного камня имеет ярко выраженную зависимость от соотношения между массой цемента (Ц) и воды (В) в составе цементного теста. Оптимальное значение — Ц/В = 2,5-3,3 (В/Ц=0,4-0,3).

Приблизительная зависимость марочной прочности цемента М500 от отношения массы цемента и воды имеет следующий вид:

Отсюда легко увидеть, что:

при Ц/В = 2,5: Rсж = 500х2,5/2 = 625,
при Ц/В = 3,0: Rсж = 500х3/2 = 750,
при Ц/В = 1,5: Rсж = 500х1,5/2 = 375.

Следовательно, прочность (качество) цементного клея находится в прямой зависимости от водоцементного отношения. Кроме того, от содержания воды в цементном тесте зависит и величина усадочных напряжений, так как избыточная вода, испаряясь, создает пустотность в цементном камне.

Величина объемной пустотности для наполнителей и цементного теста рассчитывается по формуле:

Читайте так же:
Расчет фундамента под силос для цемента

где Н – насыпная плотность дробленного минерала, С – собственная плотность минерала.

Для дальнейшего изложения будем придерживаться одного состава цементного теста:

Ц/В = 2,5, плотность теста 1,9кг/л.

Такой состав теста позволяет получать цементный клей достаточно высокого качества с одной стороны и, при введении пластификаторов, имеет высокую подвижность с другой стороны.

Как было отмечено ранее в первом приближении (без учета коэффициента раздвижки) составление рецептуры бетона сводится к заполнению пустотности наполнителя (песка) цементным тестом заданного качества. Далее – заполнение пустотности щебня цементно-песчанным тестом.

Пустотность песка в зависимости от насыпной плотности можно рассчитать по формуле 2 .

Объем и массу цементного теста рассчитаем по следующему алгоритму:
1. Объем теста равен пустотности песка.
2. Масса теста равна произведению его объема и плотности.
3. Масса цемента равна массе теста, деленного на 1,4.
4. Расход цемента на 1м 3 пескобетона равен произведению массы цемента и коэффициента раздвижки 1,05.

Таблица 1. Расход цемента в зависимости от насыпной плотности песка.

Насыпная плотность
сухого песка, тн/м 3
Пустотность, м 3Объем теста, лМасса теста, кгМасса цемента, кгРасход цемента на 1м 3
пескобетона, кг
1,350,50500950679713
1,450,46460874624655
1,550,43430817584613
1,650,39390741529555

Следует подчеркнуть, что все составы пескобетона в табл.1 имеют одинаковую марочную прочность, но будут различаться по объемной усадке – она пропорциональна расходу цемента и по срокам начала схватывания – примерно обратно пропорциональны квадрату расхода цемента. Минимальную ожидаемую марочную прочность можно оценить как произведение результата формулы 1 и коэффициента 0,8. Для цемента М500 и Ц/В = 2,5 имеем: М = 625х0,8 = 500.

В предыдущих вычислениях из трех параметров песка учитывался только один – насыпная плотность. Было сделано два допущения: песок не содержит пыли и имеет «хороший» модуль крупности. Для приближения к реальной картине необходимо учесть и эти два параметра. О пагубном влиянии пылевидных и глинистых частиц на прочностные свойства бетона и увеличении трещинообразования (устройство бетонных полов) можно рассказывать очень долго. Попробуем учесть его в расчетах.

Процесс образования цементного теста из воды и сухого цемента можно разделить на две последовательные стадии:
Смачивание водой поверхности частиц цемента.
Заполнение водой пустот между частицами цемента.

Для смачивания поверхности частиц цемента (цементной пыли) необходимо около 15% воды от массы цемента. И эта величина тем больше, чем сильнее измельчен цемент. Вода как бы обволакивает пленкой каждую частицу, равномерно распределяясь на ее поверхности. Чем сильнее измельчен цемент, тем больше общая площадь поверхности каждого грамма цемента и тем больше требуется воды на ее смачивание. Площадь поверхности частицы цемента пропорциональна квадрату ее диаметра, а масса частицы пропорциональна кубу диаметра. Отсюда следует, что общая площадь поверхности частиц отнесенная к их массе обратно пропорциональна характерному диаметру частицы:

Этот закон распространяется и на любой другой измельченный материал. В том числе на песок и на пыль, которая в нем содержится.

Характерный диаметр частицы цемента Dц равен 40мкм. Характерный диаметр пыли, содержащейся в наполнителе Dп равен 5мкм. Отношение водопотребности на стадии смачивания равно отношению удельных площадей поверхности. По формуле 3, получаем:

Вп/Вц = Dц/Dп = 40/5 = 8

То есть для смачивания поверхности пыли необходимо в восемь раз больше воды, чем для смачивания поверхности цемента. В абсолютном выражении: 15х8 = 120% воды от массы пыли.

Даже если считать, что на вторую стадию образования теста будет расходоваться равное удельное количество воды, то мы все равно получим весьма тревожную цифру:

при заданном Ц/В=2,5 (В/Ц=0,4= 40%), получаем:
8х15% + (40% — 15%) = 145% воды от массы пыли.

Дополнительно внесенная в бетон вода
будет снижать прочностные свойства цементного камня согласно формуле 1 !

Для наглядности возьмем третий состав из Табл.1 и пересчитаем его для песков одинаковой плотности, но с различным содержанием пылевидных частиц.

насыпная плотность песка – 1,55тн/м 3 ,
расход цемента – 613кг/м 3 , начальное Ц/В = 2,5,
активность цемента – М500, пескобетоны имеют равную подвижность.

Читайте так же:
Установка для перегрузки цемента

Таблица 2. Снижение прочности цементного камня в зависимости от содержания пыли.

Содер-жание пыли, %Масса пыли
на 1м 3
бетона, кг.
Дополнительный
расход воды
на 1м 3 бетона, кг.
Общее кол-во
воды на 1м 3
бетона, кг
Ц/В реальноеМарочная прочность
цементного камня,
кг/см 2
Ожидаемая марочная
прочность бетона,
кг/см 2
245,22,50625500
115,522,5267,72,29573458
23145290,22,11528422
346,567,5312,71,96490392
46290335,21,83458366

Падение прочности на сжатие для пескобетонов одинакового состава, но с разным содержанием пыли, согласно Табл.2 может составлять до 27%. Причем эту разницу нельзя компенсировать простым увеличением расхода цемента! Компенсация возможна только за счет снижения количества воды затворения и, следовательно, уменьшения подвижности бетона.

Кроме падения прочности, увеличение количества воды из-за повышенного содержания пыли, значительно увеличивает вероятность образования трещин на ранних стадиях твердения бетона. Этот фактор чрезвычайно важен при устройстве бетонных полов – стяжек пола.

Модуль крупности – величина весьма туманная. Вдаваться в подробное рассмотрение не имеет большого смысла. Но о самом песке рассказать стоит отдельно. Точнее о размерах его частиц. Как видно из формулы 3 характерный диаметр частиц песка будет влиять на водопотребность бетона, и, следовательно формуле 1, на качество цементного клея (прочность цементного камня). Вот только в отличие от пыли, заполняться пустотность песка будет не водой, а цементным клеем. Следовательно, отрицательное влияние будет давать только одна стадия – смачивание водой поверхности частиц песка.

Оценим влияние характерного размера частиц песка на прочностные характеристики равноподвижных бетонов по формуле 3 и формуле 1 , аналогично задаче с пылью.

Условия расчетов такие же, как и в Табл.2 , содержание в песке пыли – 0%, характерный диаметр частиц цемента – 40мкм (0,04мм), насыпная плотность песков одинаковая — 1,55тн/м 3 .

Таблица 3. Влияние характерного размера частиц песка на прочность равноподвижных бетонов.

Характерный диаметр
частиц песка, мм.
Дополнительный
расход воды, кг.
(0,04/D)х1550х0,15
Общее кол-во
воды на 1м 3
бетона, кг
Ц/В реальноеМарочная прочность
цементного камня,
кг/см 2
Ожидаемая марочная
прочность бетона,
кг/см 2
0,193338,21,81452,5362
0,331276,22,22555444
0,519264,22,32580464
0,713258,22,37592,5474
0,910255,22,40600480
1,18,5253,72,42605484
1,37,2252,42,43607,5486

Особенно подчеркнем, что характерный диаметр частиц песка (зерна) значительно меньше среднего диаметра зерна. Так для песка с модулем крупности 2,45 и средним диаметром зерна 1,33мм, характерный диаметр (рассчитывается по средней площади частицы) составляет 0,7мм.

Для оценок можно использовать соотношение:

Характерный диаметр = 0,6…0,8 X средний диаметр зерна
активность цемента – М500, пескобетоны имеют равную подвижность.

В свою очередь, средний диаметр зерна достаточно тесно связан с модулем крупности песка. Для приемлемого 10%-го падения прочности бетона (прочность бетона на «хорошем» песке составляла М500), характерный диаметр зерна должен составлять более 0,4мм, следовательно: средний диаметр – более 0,6мм (по соотношению 4) .

Данная величина среднего диаметра характерна для песков с величиной модуля крупности 2,2. С возрастанием величины модуля крупности увеличивается средний диаметр зерна, что приводит к падению пластичности раствора (пескобетона), а, если раствор является составной частью крупнозернистого бетона, то понижается способность заполнять пустотность между зернами щебня (гравия), что приводит к увеличению коэффициента раздвижки при расчете состава крупнозернистого бетона (уменьшению расхода щебня). Поэтому величина модуля крупности песка ограничена сверху и должна составлять не более 2,8. Оптимальные значения модуля крупности лежат в пределах 2,4-2,7.

Пусть простят меня поклонники точных расчетов – я не стал пересчитывать поправки на изменение объема пескобетонов при увеличении воды и поправки на естественные влажности песков и бетонов и т.д. Я предпочел оставить картину более качественной и прозрачной.

С другой стороны, количественные расчеты остались достаточно точными и дают хорошее представление о влиянии характеристик песка на свойства бетона. Так же, я ограничился расчетами пескобетонов, хотя расчет крупнозернистых бетонов можно выполнить по точно такому же алгоритму, с учетом чуть большего коэффициента раздвижки зерен песка и лещадности щебня.

Читайте так же:
Как мешать цемент 400 для фундамента

ООО «ТэоХим» выполняет устройство бетонных полов Эластобетон: упрочненных (объемный топпинг), полимерцементных, мозаичных.

ЦЕМЕНТЫ

Получение. Сырьем для получения цементов служат прир. материалы (известковые, глинистые, мергелистые, гипсовые, глиноземистые породы) и пром. отходы (металлургич. и топливные шлаки, золы от сжигания углей, белитовый шлам, отходы от переработки нефелиновых пород и др.).
Произ-во цементов включает приготовление сырьевой смеси (дробление исходных материалов, их тонкий помол, перемешивание, корректировка хим. состава смеси), обжиг сырьевой смеси, тонкий помол обожженного продукта (клинкера) до порошкообразного состояния вместе с небольшим кол-вом гипса, активными (шлак, зола, гемза) и неактивными при взаимод. с водой (кварц, карбонатные породы) минер. добавками и др. в-вами, придающими цементам нужные св-ва (напр., пластификаторы, гидрофобные добавки).
В зависимости от метода приготовления сырьевой смеси различают сухой, мокрый и комбинир. способы произ-ва. При сухом способе сырье (известняк и глина) в процессе дробления и помола в мельницах высушивается и превращается в сырьевую муку, после чего мука поступает на обжиг. При мокром способе помол сырьевых компонентов осуществляют в мельницах в присут. воды, к-рую вводят для понижения твердости, интенсификации процесса помола и уменьшения удельного расхода энергии. Влажность сырьевой смеси (шлама), поступающего на обжиг, при мокром помоле составляет 34-43% по массе; для снижения влажности шлама к сырьевой смеси добавляют сульфитно-дрожжевую бражку, триполифосфат Na или ПАВ. При комбинированном способе сырьевая смесь готовится по предыдущей схеме, затем обезвоживается на вакуум-фильтрах или вакуум-прессах, формуется в гранулы и поступает на обжиг.
Обжиг сырьевой смеси осуществляют при 1450 °С во вращающихся (редко шахтных) печах, представляющих собой наклонный стальной цилиндр, в загрузочную часть к-рого подается сырьевая смесь, а со стороны выгрузки (головки) печи через форсунку — топливо (см. Печи). Сырьевая смесь движется по направлению к головке печи, подвергаясь действию нагретых топочных газов. Вращающуюся печь условно разделяют на неск. технол. зон. В зоне сушки под действием отходящих топочных газов сырьевая смесь подсушивается, в зоне подогрева нагревается до 500-600 °С и переходит в зону кальцинирования (900-1200 °С), в к-рой происходит разложение СаСО3. Получающийся СаО в твердом состоянии взаимод. с составными частями глины и железистого компонента с образованием в экзотермич. зоне 2CaO x SiO2, 5СаО x 3А12О3, 3СаО x А12O3, 4CaO x Al2O3 x Fe2O3, 2CaO x Fe2O3, а также СаО, MgO и др. оксидов.
В зоне спекания при т-ре 1450 °С обжигаемый материал (клинкер) частично плавится; в этой зоне образуется главный минерал клинкера ЗСаО x SiO2. При дальнейшем прохождении по печи клинкер попадает в зону охлаждения (т-ра 1000-1200 °С). Холодный клинкер дробят и тонко измельчают вместе с гипсом и др. добавками в барабанных шаровых мельницах, а затем транспортируют в железобетонные цилиндрич. емкости — т. наз. цементные силосы.

Свойства. При взаимод. цементов с водой — гидратации, затворении — первоначально образуется пластичное цементное тесто, к-рое со временем на воздухе или в воде уплотняется, теряет пластичность и превращается в т. наз. цементный камень. Безводные минералы клинкера превращаются при этом в соответствующие гидросиликаты, гидроалюминаты и гидроферраты(III) Са, напр.:

ЗСаО x SiO2 + 2H2O Ca2SiO4 x Н2О + Са(ОН)2
Ca2SiO4 + Н2О Ca2SiO4 х Н2О ЗСаО х А12О3 + 6Н2О ЗСаО х А12О3 х 6Н2О

Образовавшийся Са(ОН)2 под действием СО2 воздуха постепенно превращается в СаСО3, гидроалюминаты Са с гипсом в присут. воды дают двойные основные сульфаты, напр. Са6А12(ОН)12(SО4)3 x26Н2О и Ca4Al2(OH)12SO4 x6H2O. При получении бетона образовавшийся Са(ОН)2 с СО2 воздуха и SiO2 превращается в очень прочную массу, состоящую из карбонатов и силикатов Са.

Табл. 1.-ОСНОВНЫЕ ЦЕМЕНТЫ

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector