Storossproject.ru

Декор и Мебель
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Кирпич эффективный характеристики теплопроводность

Характеристики кирпича

С тех пор, как человек «освоил» огонь и научился обжигать глину, кирпич стал основным и самым популярным материалом для строительства зданий разного предназначения, устройства каминов и печей и т.д. Естественно, за годы технология изготовления изменялась, постоянно совершенствуясь, что положительным образом сказалось на технических характеристиках кирпича.

На какие виды делится кирпич

Два основных вида, известные даже неспециалистам, это:

  • Кирпич керамический, изготовленный из глины.
  • Кирпич силикатный, сырьем для которого является песок, известь + ряд добавок.

По степени плотности кирпич можно подразделить на:

  • Полнотелый (не более 13% количества пустот).
  • Пустотелый (до 50% количества пустот).

Оба они используются для кладки фундаментов, стен, сводов и колонн, и каждый имеет свои достоинства. Первый — более прочный. Второй — более легкий и с повышенными теплоизолирующими свойствами.

Стоит также отдельно выделить:

  • Кирпич облицовочный (фасадный, лицевой). Он более эстетичен благодаря глянцевой поверхности, имеет более широкую цветовую гамму, правильную форму. Наличие неровностей и трещин исключено.
  • Кирпич шамотный, используемый для устройства печей и каминов (для внешней и внутренней отделки).

Какие характеристики кирпича должны учитываться исходя из цели его использования

С учетом того, для какой цели используется материал, следует обращать особое внимание на те или иные характеристики кирпича. Мы перечислим основные:

  • Вес и размер. По размеру (длина/высота/ширина) кирпич делится на одинарный, полуторный и двойной. Соответственно, чем больше габариты кирпича, тем он тяжелее. Существуют также кирпичи нестандартных размеров (европейский, реставрационный).
  • Прочность на сжатие и изгиб. Главная характеристика, подразумевающая способность материала к сопротивлению внутренним натяжениям и деформации без разрушения. Обозначается литерой М и цифрой, которая показывает допустимую нагрузку (в килограммах) на 1 квадратный см. Несущая прочность кладки несколько ниже прочности отдельного кирпича из-за наличия в ней растворных прослоек. Чем выше возводимое здание, тем более прочным должен быть кирпич.
  • Морозостойкость — способность выдерживать замораживание с последующим оттаиванием, при этом материал насыщается водой. Этот показатель особо важен для России, особенно для северных регионов. Обозначается литерой F и цифрой, показывающей количество циклов замораживания/размораживания, которые материал выдержал, сохраняя свои качества и не деформируясь.
  • Водопоглощение — также одна из основных и важных характеристик кирпича. Обычно рассматривается в связи с морозостойкостью. Показывает способность материала впитывать влагу. Слишком высокие, как и слишком низкие показатели водопоглощения нежелательны. В первом случае теплопроводность повышается, а морозостойкость, наоборот, снижается. Во втором — кладочный раствор будет скреплять кирпичи не очень надежно. Степень водопоглощения указывается в %. Стандарт — от 6 до 16%.
  • Плотность кирпича. Как она рассчитывается, известно всем из школьного курса физики — масса делится на объем. Обозначается числом гр. на кубический см. или кг. на кубический м. Высокая плотность увеличивает прочность кирпича, но уменьшает его теплосберегающие свойства.
  • Теплопроводность кирпича. Показывает способность материала сохранять тепло. Грубо говоря, чем ниже показатель, тем теплее будет в помещении. С этой точки зрения пустотелый кирпич эффективнее полнотелого, так как благодаря пустотам в «теле» лучше сберегает тепло внутри помещения.
  • Стойкость к большим перепадам температур. Свойство, важное для устройства печей и каминов, где кирпич контактирует с открытым огнем. Способностью выдерживать температуру выше полутора тысяч градусов и не разрушаться после многих циклов нагрева/охлаждения обладает шамотный кирпич.
  • Форма. Кроме классических прямоугольных кирпичей, есть виды со скругленными ребрами и углами, криволинейными либо скошенными гранями. Они применяются для возведения круглых колонн, арок, сложной формы фасадов.
  • Цвет. Имеет значение только с эстетической точки зрения, поэтому гамма оттенков строительного кирпича не такая обширная, как облицовочного. Благодаря различным добавкам можно придать кирпичу любой цвет или фактуру — от «под искусственный камень» до «под дерево».

Только одно свойство остается неизменным — кирпич – это лучший и самый надежный материал для строительства.

Знать характеристики кирпича необходимо не только специалистам, поскольку это помогает не ошибиться с выбором при покупке и точно рассчитать количество изделий, необходимых для постройки или облицовки дома, забора или другого сооружения.

Сравнительный анализ теплотехнических свойств домов из разных материалов

Постоянный рост затрат на отопление жилья заставляет задуматься о выборе технологии строительства с максимальными показателями по энергоэффективности. Строительство энергосберегающих домов является сегодня не прихотью, а острой необходимостью, закрепленной законодательно в федеральном законе РФ за № 261-ФЗ «Об энергосбережении».

Эффективность стеновой конструкции жилого дома напрямую зависит от показателей по теплопотерям, которые происходят через разные элементы ограждающих конструкций дома. Основное тепло теряется именно через наружные стены. Вот почему их теплопроводность серьезно влияет на микроклимат внутри помещений. Нет смысла говорить об эффективных стеновых конструкциях без учета показателей теплопроводности. Стена может быть толстая, прочная и дорогая, но вовсе не энергоэффективная.

Возникает закономерный вопрос, какой дом теплее, а точнее, какой из популярных в нашей стране материалов лучше сохраняет тепло? Простое сравнение коэффициентов теплопередачи в данном случае является не совсем корректным. Прежде всего, следует оценивать способность сохранять тепло внешней ограждающей конструкцией, как единой системы.

Читайте так же:
Схема станка для изготовления лего кирпича

Рассмотрим загородные дома, построенные по различным технологиям, с различными типами стен, и посмотрим какой дом имеет наименьшие потери тепла.

В малоэтажном жилищном строительстве наибольшее распространение получили следующие виды домов:

  • каменные
  • деревянные
  • каркасные

Каждый из названных вариантов имеет несколько подвидов, параметры которых существенно различаются. Для получения объективного ответа на вопрос, какой дом самый теплый, сравнивать будем только лучшие образцы по одному из числа представленных в списке.

Характеристики теплопроводности
популярных строительных материалов

Дома из кирпича

Кирпичный дом представляет собой надежное, долговечное жилище и пользуется популярностью у наших сограждан. Его прочность и стойкость к неблагоприятным факторам среды обуславливается большой плотностью материала.

Кирпичные стены неплохо сохраняют тепло, но все же требуют постоянного отопления помещений. В противном случае, зимой кирпич впитывает влагу и под весом кладки начинает разрушаться. Если длительное время держать кирпичный дом без отопления, его придется прогревать до нормальной температуры около трех дней.

Минусы кирпичных построек:

  • Высокая теплопередача и потребность в дополнительной теплоизоляции. Без теплоизоляционного слоя толщина кирпичной стены, способной удерживать тепло, должна быть не менее 1,5 м.
  • Невозможность периодического (сезонного) использования здания. Кирпичные стены хорошо впитывают тепло и влагу. В холодный сезон полный прогрев дома займет не менее трех суток, а на полное устранение излишней влаги уйдет не менее месяца.
  • Толстый цементно-песчаный шов, скрепляющий кирпичную кладку, имеет в три раза больший коэффициент теплопроводности по сравнению с кирпичом. Соответственно теплопотери через кладочные швы еще более значительны, чем через сам кирпич.

Технология теплого дома из кирпича требует дополнительного утепления с внешней стороны стены плитами утеплителя.

Дома из дерева

Комфортная атмосфера быстрее создается в доме, построенном из дерева. Этот материал практически не охлаждается и не нагревается, поэтому температура внутри помещения быстро стабилизируется. При достаточной толщине стен такие дома можно не утеплять, поскольку дерево само по себе может служить термоизоляцией.

Однако, для того, чтобы деревянный дом был теплым, толщина наружных стен из сплошной древесины должна составлять более 40 см, из клееного бруса 35-40 см, а из оцилиндрованного бревна более 50 см. Стоимость строительства такого жилья очень высока. Остается, либо игнорировать современные требования и строить дом, например, из бруса толщиной минимум 20-22 см или из бревен диаметром 24-28 см (при этом понимать, что расходы на отопление будут достаточно высокими, особенно если в доме нет магистрального газа), либо стены деревянного дома все же придется дополнительно утеплять.

Людям, которые на первое место ставят комфорт и целесообразность, лучше подумать об утеплении деревянного дома. Тогда дерево создаст в доме оптимальный микроклимат, а утепление обеспечит экономию на отоплении. По сравнению с кирпичом теплопотери деревянного дома значительно меньше. Но все же, для того, чтобы теплый дом из дерева был еще и экономичным, ему требуется дополнительная теплоизоляция.

Дома из каркаса

По своим характеристикам каркасная технология строительства выглядит намного лучше кирпичного или деревянного дома и не требует дополнительного утепления. Если в зоне климата, где планируется строительство загородного дома, зимой бывают низкие температуры, то каркасная технология является самым идеальным вариантом.

Технология каркасного домостроения подразумевает слой термоизоляции внутри стен, который позволяет оградить помещения от наружного холода. Большим плюсом постройки каркасного дома, в сравнении с деревянным или кирпичным, является высокая энергоэффективность при очень небольшой толщине стен.

Данная технология позволяет возводить абсолютно разные по своему функциональному назначению объекты:

Каркасные дома для сезонного проживания.
Например, каркасно-щитовые, дома из СИП-панелей и прочие «эконом» варианты, используемые, в основном,
как летние дачи.

Теплые каркасные дома для постоянного проживания.
Например, здания на монолитном фундаменте, с утеплением стен не менее 200 мм, с внутренними инженерными коммуникациями.

В каркасно-щитовых домах и домах из СИП-панелей для поддержания тепла требуется постоянно работающий обогреватель, поскольку тепло в таком доме не задерживается надолго. Хотя прогревается данное строение довольно быстро, всего за несколько часов. Такие дома больше подходят для временного проживания.

Качественный каркасный дом для постоянного проживания, за счет своей многослойности и других конструкционных особенностей, позволяет минимизировать потери тепла, не оставляя ощущения влажности помещения в холодное время года. Такое жилье не требует постоянного подогрева и может долго сохранять внутреннее тепло.

Особенно высокими параметрами энергоэффективности обладают здания, построенные по технологии 3D каркас, стены которого имеют три смещенные между собой слоя утепления общей толщиной 250 мм, которые перекрывают деревянные элементы каркаса, ликвидируя в стенах «мостики холода». Кроме того, внешним слоем утеплителя закрыты цокольное и межэтажное перекрытия, поэтому в доме даже в лютые морозы всегда теплые полы.

Оценка теплоизоляционных свойств
внешних ограждающих конструкций

Чтобы понять, какой загородный дом является самым теплым среди всех, сравним коэффициенты теплопроводности материалов разных стеновых конструкций.

Коэффициент теплопроводности – эта величина, которая показывает удельную теплопроводность материала внешних стен. Низкая теплопроводность стен дома способствует продолжительному сохранению тепла внутри помещения и обеспечивает отличные условия проживания. В противном случае стены пропускают холод и потребуется больше мощности в системе отопления.

Читайте так же:
Длина одного красного кирпича

Теплопроводность каменного дома

Рассмотрим коэффициенты теплопроводности материалов каменных домов:

  • Железобетон — 1,5 Вт/(м∙К)
  • Силикатный кирпич – 0,70 Вт/(м∙К)
  • Керамический сплошной — 0,56 Вт/(м∙К)
  • Керамический пустотелый – 0,47 Вт/(м∙К)

Чем выше коэффициент теплопередачи, тем хуже теплозащита стеновой конструкции. Как видим, сами по себе материалы, из которых строятся каменные дома, имеют довольно высокий коэффициент теплопередачи. Следуя требованиям СНиП для того чтобы построить каменный дом, толщина его внешних стен должна достигать просто ошеломляющих цифр. Например, дом из бетона должен иметь толщину стен в 2,5 метра, а из кирпича — в 1,5 метра. Это огромные материальные затраты. Сегодня, таким образом уже никто не строит.

Чтобы удерживать тепло внутри дома у кирпича просто не хватает теплопроводности, поэтому кирпичные стены всегда дополнительно утепляют. Для теплоизоляции обычно применяются материалы типа пенополистирола. Сверху утеплителя внешние стены дома обкладывают декоративным кирпичом или другим облицовочным материалом.

Теплопроводность деревянного дома

Если сравнивать деревянный или кирпичный дом, какой из них лучше сохраняет тепло? Ответ будет явно в пользу древесины.

Дерево, по сравнению с кирпичом или бетоном, в разы теплее. Влияние на теплопроводность оказывает плотность материала. У пористого материала всегда более низкий коэффициент теплопередачи, соответственно стены такой постройки более теплые. Древесина имеет хорошие показатели теплопроводности — 0,18 Вт/(м∙К). Это минимум в три раза ниже, чем у кирпича, и примерно на 30% меньше, чем у газосиликатных и пенобетонных блоков. Разница очевидна.

Каркасные дома из бруса и бревна имеют определенные преимущества за счет лучших характеристик материала. Однако основным недостатком деревянной конструкции является высокая ветропроницаемость и низкая герметичность. Крайне сложно обеспечить высокую точность сопряжения деревянных элементов, особенно в углах дома. Джутовые или полимерные уплотнители лишь частично решают данную проблему. Следствием этого является наличие большого количества «мостиков холода» по всей площади стеновой конструкции. Наибольшие потери тепла в деревянном доме сосредоточены именно в местах сквозных промерзаний, ликвидировать которые возможно только с помощью дополнительного утепления стен.

Теплопроводность каркасного дома

По ряду своих характеристик обычные канадские каркасные дома с толщиной стен 150 мм выглядят более привлекательно, чем каменные или деревянные. Это связано с тем, что каркасный дом обладает наименьшим среди прочих технологий и стройматериалов коэффициентом теплопроводности — 0,038 Вт/(м∙К). Получается, что его теплопроводность в 5 раз меньше, чем у дома из цельной древесины. Если сравнивать теплопроводность каркасного дома с кирпичным, то разница составляет почти 15 раз.

Среди перечисленных наилучшие показатели демонстрируют дома по технологии 3D каркас. Внешняя стена, возведенная по этой технологии, имеет коэффициент теплопроводности 0,0022 Вт/(м∙К). Данный показатель в 40 раз меньше, чем у профилированного бруса и более чем в 200 раз ниже, чем у кирпича. Такие высокие показатели энергоэффективности достигаются за счет структуры тройного каркаса и трех перекрестных слоев базальтового утеплителя.

Внешние стены дома по технологии 3D каркас не имеют «мостиков холода» и обеспечивают надежное сохранение тепла даже при экстремально низких температурах. Отсутствие контакта между элементами внешней и внутренней несущей конструкции полностью исключает возможность промерзания стен.

Заключение

В последние годы в сегменте малоэтажного жилищного строительства происходят значительные изменения. Экономические условия вынуждают население отказываться от традиционных материалов в пользу более прогрессивных технологий.

Наружная стена состоит из отдельных элементов, совокупность и взаимодействие которых определяет способность жилого здания сохранять тепло. В этом отношении самые худшие характеристики у традиционной кирпичной кладки. Высокая теплопроводность даже у лучших образцов кирпича, практически исключает возможность его использования без дополнительного утепления. Воздушный зазор в двухрядной стене и использование пустотелого керамического кирпича лишь незначительно снижают теплопотери. Подобные строительные конструкции однозначно нуждаются в дополнительном утеплении.

Сравнивать какой дом лучше каркасный или кирпичный по теплотехническим характеристикам даже некорректно. Преимущество первого выглядит просто подавляющим. При прочих равных условиях системы отопления, для того, чтобы прогреть кирпичные стены, бывает необходимо несколько суток. Каркасный дом, возведенный, например, с использованием технологии 3D каркас, полностью протапливается в течение двух часов и в дальнейшем хорошо сохраняет тепло.

Этот же фактор позволяет точно ответить на вопрос: брус или каркас что лучше? Какое жилое строение является более эффективным с точки зрения способности сохранения тепла? Преимущества каркаса здесь также весомые. Деревянный брус или бревно имеют неплохие показатели тепловодности, но дом из бруса все же не лишен технологических недостатков в виду наличия большого количества «мостиков холода».

Простое сравнение показателей теплопроводности кирпича и 3D каркас явно в пользу последнего. Ответ на вопрос, из чего строить самый теплый дом, очевиден и однозначен. Решая данный вопрос, правильнее говорить все же о деревянном каркасном доме по технологии 3D каркас, в котором применение многослойной структуры позволяет устранить все недостатки других технологий загородного домостроения.

Читайте так же:
Как восстановить кирпич qualcomm

Здания по технологии 3D каркас являются не только самыми теплыми каркасными домами для постоянного проживания, но также являются лидерами по энергоэффективности. В этом мнения многих специалистов совпадают: 3D каркас обладает исключительной способностью к сохранению тепла, имеет параметры «пассивного дома» и рекомендован для использования на всей территории нашей страны в качестве энергоэффективного жилья.

НУЖЕН ТЕПЛЫЙ ДОМ ДЛЯ КРУГЛОГОДИЧНОГО ПРОЖИВАНИЯ?

Теплопроводность

Теплопрово́дность — способность материальных тел проводить энергию от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела (атомов, молекул, электронов и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Различают стационарный и нестационарный процессы теплопроводности в твердом теле. Стационарный процесс характеризуется неизменными во времени параметрами процесса. Такой процесс устанавливается при длительном поддержании температур теплообменивающихся сред на одном и том же уровне. Нестационарный процесс представляет собой неустановившийся тепловой процесс в телах и средах, характеризуемый изменением температуры в пространстве и во времени.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

Содержание

  • 1 Закон теплопроводности Фурье
    • 1.1 Связь с электропроводностью
    • 1.2 Коэффициент теплопроводности газов
    • 1.3 Теплопроводность в сильно разреженных газах
  • 2 Обобщения закона Фурье
  • 3 Коэффициенты теплопроводности различных веществ
  • 4 Примечания
  • 5 См. также
  • 6 Ссылки

Закон теплопроводности Фурье [ править | править код ]

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q → = − ϰ g r a d ⁡ T >=-varkappa mathop > T>

где q → >> — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ коэффициент теплопроводности (удельная теплопроводность), T — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad ⁡ T > T> (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье. [1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P = − ϰ S Δ T l , >,> P = − Вт м ⋅ К ⋅ м 2 ⋅ К м = Вт > over <>cdot >>>cdot <<>^<2>cdot >> over >>=>>

где P — полная мощность тепловой передачи, S — площадь сечения параллелепипеда, Δ T — перепад температур граней, l — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью [ править | править код ]

Связь коэффициента теплопроводности ϰ с удельной электрической проводимостью σ в металлах устанавливает закон Видемана — Франца:

ϰ σ = π 2 3 ( k e ) 2 T , >=><3>>left(>right)^<2>T,> где k — постоянная Больцмана, e — заряд электрона, T — абсолютная температура.

Коэффициент теплопроводности газов [ править | править код ]

В газах коэффициент теплопроводности может быть найден по приближённой формуле [2]

ϰ ∼ 1 3 ρ c v λ v ¯ , <3>>rho c_lambda >,>

где ρ — плотность газа, c v > — удельная теплоёмкость при постоянном объёме, λ — средняя длина свободного пробега молекул газа, v ¯ >> — средняя тепловая скорость. Эта же формула может быть записана как [3]

ϰ = i k 3 π 3 / 2 d 2 R T μ , <3pi ^<3/2>d^<2>>>>>,>

где i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i = 5 , для одноатомного i = 3 ), k — постоянная Больцмана, μ — молярная масса, T — абсолютная температура, d — эффективный (газокинетический) диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах [ править | править код ]

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ ∼ 1 3 ρ c v l v ¯ ∝ P <3>>rho c_l>propto P> , где l — размер сосуда, P — давление.

Читайте так же:
Кирпич проектов строительства печи

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Обобщения закона Фурье [ править | править код ]

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл [4] , а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом: [5]

τ ∂ q ∂ t = − ( q + ϰ ∇ T ) . >>=-left(mathbf +varkappa ,nabla Tright).>

Если время релаксации τ пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ [ править | править код ]

МатериалТеплопроводность, Вт/(м·K)
Графен4840 ± 440 — 5300 ± 480
Алмаз1001—2600
Графит278,4—2435
Арсенид бора [en]200—2000
Карбид кремния490
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь нелегированная47—58
Свинец35,3
Титан21,9
Сталь нержавеющая (аустенитная) [6]15
Кварц8
Термопасты высокого качества5—12 (на основе соединений углерода)
Гранит2,4
Бетон сплошной1,75
Бетон на гравии или щебне из природного камня1,51
Базальт1,3
Стекло1—1,15
Термопаста КПТ-80,7
Бетон на песке0,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,05—0,3
Газобетон0,1—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Пенополистирол (горючесть Г1)0,038—0,052
Экструдированный пенополистирол (горючесть Г3 и Г4)0,029—0,032
Стекловата0,032—0,041
Каменная вата0,034—0,039
Пенополиизоцианурат (PIR)0,023
Пенополиуретан (поролон)0,029-0,041
Воздух (300 K, 100 кПа)0,022
Аэрогель0,017
Диоксид углерода (273—320 K, 100 кПа)0,017
Аргон (240—273 K, 100 кПа)0,015
Вакуум (абсолютный)0 (строго)

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, естественного — электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

Основные разновидности, свойства и преимущества пустотелого кирпича

Кирпич строительный не теряет своей популярности. На сегодняшний день, пустотелый кирпич преобладает на строительных площадках. Его второе название- эффективный или щелевой. Его так называют из-за наличия пустот, благодаря которым затрачивается меньше сырья на его производства и уменьшается общий вес конструкции.

В разных климатических условиях, особенно в наших, перепады температур в межсезонный период довольно большие. Что бы в зимний период стены не промерзали, приходится делать их более толстыми. Увеличение толщины стены связанно не только с погодными условиями, но с нагрузкой, которую она сможет выдержать и с звука- тепло- проводимостью. Увеличение количества материала приводит к подорожанию строительного объекта, а также к увеличению всего веса конструкции. Намного целесообразнее использовать пустотные там, где их применение допустимо.

Пустотелый кирпич — основные разновидности

На строительных объектах в большей степени распространены 3 вида:

  • Кирпич красный керамический;
  • Силикатный (Белый);
  • Гиперпрессованный.

В свою очередь, все они могут быть как полнотелыми, так и пустотными. Их применение регламентируется требованием проекта. Полнотелые обладают повышенной прочностью, используются для несущих стен или фундаментов. Достоинством пустотелых являются пустоты, заполненные воздухом, благодаря которым теплопроводность материала снижается. Они легче, дешевле, но при этом прочность их меньше.

Плотность полнотелого керамического кирпича составляет около 1600- 1800 кг на м куб. Теплопроводность до 0,5 Вт в мК. Плотность пустотелого в среднем от 1100 до 1500 кг на м куб., но теплопроводностью от 0,22 до 0,26 Вт на мК. Для увеличения показателя теплопроводности, в состав раствора для кладки добавляют шлак или перлит. Это позволяет увеличить показатель на 10-15 процентов.

Несколько слов о производстве

Производство пустотелых блоков немного сложное, чем полнотелых. Отверстия создаются с помощью специальных керн установленных на форме для гидравлического пресса. Сырец для керамического состоит из глины влажностью от10 до 15 процентов. У пустотелых есть большей недостаток- низкий показатель морозостойкости. По этой причине их нельзя использовать в подвальных помещениях или местах с повышенной влажностью.
Согласно ГОСТу, пустотелым является материал, в котором более 15 процентов пустот. Обычно это показатель около 30-40 процентов, при различных формах и размерах.

Читайте так же:
Видишь кирпич это кровь кирпича

Пустотелые делают таких видов:

  • Керамический (красный). Стандартный, самый распространенный материал. Изготавливается путем обжига глиняной смеси с различными добавками. Обладает хорошими декоративными свойствами, показателями прочности и теплоизоляции.
  • Теплоэффективный. Эффективность такого материала заключается в значительной экономии средств, при обеспечении максимальных характеристик. Теплоизоляционное свойство материала позволяет возводить кладку в один кирпич. Малый вес кирпича позволяет снизить давление на фундамент, снизив общую массу. Стены из такого материала, поддерживают постоянную температуру помещения зимой и летом.
  • Поризованный. В основном используют как облицовочный материал. Обладает хорошими шумоизоляционными и теплоизоляционными свойствами из-за пористой структуры. Как и эффективный, снижает массу конструкции за счет наличия пор.
  • Пенодиатомитовый. Выдерживает высокие температуры, поэтому используют его при возведении печей или каминов. Его можно использовать как обычный строительный кирпич, но затраты на него будут выше.
  • Цементно-песчаный. При изготовлении данного типа не используют глину. В состав вводят дополнительные добавки, которые увеличивают прочность такого кирпича. Цена производства такого материала в разы меньше, чем производство стандартного керамического или силикатного.

Структура и формы

Различается кирпич пустотелый не только по своему материалу и объему пустот, но и по внешней форме и структуре:

  • Материал с горизонтальными пустотами. При кладке такого материала, необходимо учитывать его низку прочность из-за его строения. Он подходят для заполнения перегородок в монолитно-каркасных домах.
  • Кирпич лицевой пустотелый. Применяется для облицовки фасадов зданий. Его применение обойдется дороже, чем оштукатуривание, но долговечность такого облицовочного материала выше.
  • Фактурные. На такой тип наносят рисунок или рельеф, как правило, на ложковую или тычковую часть. Он имеет красивый внешний вид, в основном используют лицевой пустотелый одинарный.
  • Фигурные. Имеет скошенные углы, из него строят колонны и арки, возводят разнообразные декоративные элементы здания.

Линейные размеры кирпича

Пустотелые кирпичи, как полнотелые, имеют стандартные размеры, регламентирует гост. Согласно гост, основными размерами являются:

  • Одинарный 250х120х65 мм;
  • Полуторный 250х120х88 мм;
  • Двойной пустотелый 250*120*138 мм.

Сколько весит кирпич?

Керамический полуторный весит приблизительно от 2,1 до 2,5 кг.

Гост также предусматривает дополнительные размеры, для пустотелых на примере керамического:

  • Евро стандарт 250 на 85 на 65 мм;
  • Одинарный керамический модульный 288 на 138 на 65;
  • Кирпич керамический пустотелый утолщенный имеет размеры 510 на 253 на 219;
  • Доборной пустотелый строительный 398 на 25 на х219.

Первые три, самые ходовые виды. Это связанно с удобством их эксплуатации (один кирпич помещается в руку) и с высокой скоростью возведения кладки. Кирпич двойной значительно ускоряет строительство.

Пустотелые подразделяются еще и по таким критериям:

  • По углублению пустот: пустота сквозная или закрытая с одной стороны;
  • По форме отверстий: круглы отверстия, прямоугольные или овальные;
  • По размещению относительно бруска: продольные или поперечные.

Нужно обратить внимание на особенности поризованного кирпича, они подпадают под стандартные критерии пустотелого. На стадии изготовления и прессования, в смесь добавляют сгораемые компоненты (деревянные опилки или солому). Во время термической обработки они сгорают, выделяя газ. Такой тип обладает лучшей теплопроводностью (около 0,22 Вт на мК), но при этом уступает по прочности. Такой материал крошится от механических повреждений и атмосферных осадков, поэтому нуждается в наружной облицовке.

Блоки керамические

Гост устанавливает такие размеры блоков:

Основные характеристики пустотелого кирпича

  • К пустотелому предъявляются такие же требования, как и к полнотелому. Показатель прочности определяется как марка (М). Производят марки 100, 125, 150, 175 и 200. Для малоэтажных сооружений используют 100 марку, для высотных, не менее 150 марки. Самой ходовой является марка 150.
  • Морозостойкость. Указывает на возможность материала выдерживать несколько циклов замораживания и оттаивания. Обозначается буквой (F). Для наших широт лучше покупать с показателем морозостойкости не менее F 35.
  • Водопоглащение. Способность материала поглощать влагу. От этого критерия зависит и показатель морозостойкости.
  • Степень пустотности. Указывает на процент пустот в кирпиче от его общего объема.

Строительный пустотелый описание

При общем объеме пустот в 45%, максимальная марка составляет 150. Марка кирпича сильно зависит от наличия пустот. Так, при наличии общего объема пустот в 22%, 150 марка вовсе не используется.

Пустотелый кирпич является отличной альтернативой более дорогому и тяжелому полнотелому. Пустотелый кирпич, вес которого значительно меньше, все же имеет ряд недостатков, из-за которых целесообразно сочетать его с другими видами материалов. При соблюдении всех технических требования к строительству, дом, построенные из пустотелого кирпича, прослужит так же долго, а может и дольше, как и из полнотелого.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector