Storossproject.ru

Декор и Мебель
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Плотность кирпича при сжатии

Характеристики кирпичной кладки

При строительстве кирпичного дома важно знать о свойствах кирпичной кладки:

  • прочность;
  • плотность;
  • сопротивление теплопередаче.

Прочность кирпичной кладки

зависит от свойств кирпича и раствора. Так, прочность на сжатие кирпичной кладки с использованием достаточно прочного раствора и стандартных методов возведения – не более 40-50% от прочности самого кирпича. Причина в следующем: поверхность кирпича, а также шва кладки не является идеально плоской; толщина и плотность слоя раствора горизонтального шва – неравномерна. По этой причине неравномерно распределяется и давление по поверхности кирпича, вызывая тем самым напряжения изгиба. Кирпич же, подобно бетону, хорошо сопротивляется сжатию, но плохо растяжению, изгибу – предел прочности кирпича на изгиб в 4-6 раз меньше предела прочности на сжатие. В результате разрушение кирпичной кладки происходит раньше достижения напряжением предела прочности кирпича на сжатие.

Разрушение кирпичной кладки начинается с появления в отдельных кирпичах вертикальных трещин в местах, расположенных под вертикальными швами, так как именно в них наблюдается концентрация напряжений растяжения и изгиба (рисунок а). Рост нагрузок приводит к увеличению трещин и разделению кирпичной кладки на столбики (рисунок б). В последствии столбики теряют устойчивость, выпучиваются, происходит окончательное разрушение кладки (рисунок в).

а – возникновение трещин в кирпиче;
б – расчленение кирпичной кладки на столбики;
в – выпучивание и разрушение кладки.
Свойства раствора также влияют на прочность кладки. Более слабый раствор легче сжимается, вызывая большие деформации кладки. Поэтому для повышения прочности используют раствор более высокой марки. Вместе с тем, повышение прочности раствора увеличивает прочность кладки незначительно. Большее влияние оказывает пластичность раствора, которая позволяет лучше расстилаться раствору по постели кирпича. В результате можно получить шов равномерной толщины и плотности, что повысит прочность кладки посредством уменьшения напряжений изгиба в отдельных кирпичах.

Влияние размера и формы кирпича на прочность кладки . При увеличении толщины кирпича количество горизонтальных швов кладки уменьшается, а сопротивление кирпича изгибу, наоборот, увеличивается. Поэтому при прочих равных условиях кладка из кирпичей большей толщины является прочнее. В свою очередь правильная форма кирпича позволяет лучше заполнять раствором шов кладки, лучше передавать нагрузки, лучше перевязывать кладку. В результате прочность кирпичной кладки увеличивается.

Качественный шов кладки — необходимее условие повышение её прочности. Горизонтальные и вертикальные швы должны быть: хорошо заполнены раствором, равномерно уплотнены; одной толщины. При большей толщине шва трудно достигнуть его равномерной плотности, кирпич больше работает на изгиб, увеличивается деформация кладки и снижается её прочность.

В соответствии с п. 7.6 СНиП 3.03.01-87 «Несущие и ограждающие конструкции» толщина горизонтального шва кирпичной кладки должна составлять — 12 мм, допустимые отклонения -2;+3 мм; вертикального шва — 10 мм (-2;+2 мм).

Для выявления зависимости прочности кладки от качества швов был проведен эксперимент: одновременно двумя каменщиками была выполнена кладка с использованием одинаковых материалов. Каменщики имели разную квалификацию – высокую и низкую. В результате прочность кладки, выполненной высококвалифицированным каменщиком, составила 5 МПа, кладка низкоквалифицированного каменщика имела прочность 2,8 МПа, что в 1,8 раза меньше.

Плотность и теплосопротивление кирпичной кладки.

С одной стороны, долговечность кирпичных домов, их огнестойкость, бо’льшая химическая стойкость обусловлены плотной структурой кирпича. С другой стороны, большая плотность кирпича увеличивает теплопроводность кладки. Поэтому часто наружные кирпичные стены дома необходимо делать толще, чем требуется по расчетам прочности и устойчивости. При уменьшении плотности кирпича с 1800 кг/см 3 до 800 кг/см 3 толщина стен /потребность в материалах сокращаются на 55%, а масса стен уменьшается на 80%. Таким образом, кладка из кирпича более низкой плотности обладает более лучшими теплотехническими свойствами и требует меньшего количества строительных материалов.

Ниже приведены теплотехнические характеристики сплошных кирпичных кладок в соответствии с таблицей Г.2 ГОСТ530-2007:

Качество швов также влияет на теплотехнические свойства кирпичной кладки: стена, у которой плохо заполнены раствором швы, легко продувается и промерзает зимой.

Плотность кирпича

  • От чего вообще зависит плотность кирпича
  • Плотность керамического кирпича
  • Плотность силикатного кирпича
  • Плотность полнотелого кирпича
  • Плотность пустотелого кирпича

Немаловажной при строительстве домов является такая характеристика, как плотность кирпича. Её можно назвать величиной переменной только потому, что поверхность этого материала является гигроскопичной, поэтому, когда рассчитывают массу кирпичного здания, принимают во внимание сухую массу +10%.

Современный кирпич не идёт ни в какое сравнение с дореволюционными образцами по одной простой причине. Раньше не экономили на обжиге и глине, максимально уплотняя смесь. Те, кому доводилось бурить старую кирпичную стену, знают, насколько плотно она зажимает бур. Стандартов на кирпич также не существовало, поэтому этот материал весил при одинаковом объёме, в среднем, в 1,5-1,8 раза больше. Можно считать это показателем качества, но при этом существенно увеличивалась нагрузка на фундамент. Тепловых расчётов не существовало, поэтому толщина стен в таких зданиях и сооружениях нередко доходила до 1 метра. С точки зрения современной рыночной экономики такой расход совершенно нецелесообразен, особенно если учитывать то, что современные стены утепляются, а также дома отапливаются совершенно другими методами.

Читайте так же:
Как отличить силикатный кирпич от керамического

От чего вообще зависит плотность кирпича

Существует несколько универсальных причин, которые влияют на плотность качественного кирпича, вне зависимости от его сорта:

  1. Трещиноватость. Это естественное свойство глины. Однако, сейчас существуют полимерные смеси, которые не дают трещин, поэтому и плотность будет значительно выше.
  2. Влажность. Хотя мы уже упоминали её выше, но стоит рассказать о ней подробнее. Основную массу влаги кирпич набирает непосредственно при укладывании. Он вбирает определенное количество влаги, которое затем балансирует в зависимости от погодных условий. Также этот показатель зависит от так называемой паровой проницаемости. Если кирпич не задерживает в себе влагу, то он будет хорошо пропускать воздух. Обычно материал, накапливающий влагу, пускают на обустройство стен подвалов и канализационных коммуникаций.
  3. Сорт глины или любого другого материала. Песок из двух разных месторождений при одинаковом объёме имеет различную массу. То же самое наблюдает и для глины. Силикатный песок для белого кирпича также имеет различную плотность. Несмотря на уплотнение, свойства материала или смеси играют роль.

По плотности в сухом состоянии кирпич подразделяют на группы:

  • обыкновенный (с плотностью 1700-1800 кг/м 3 );
  • условно-эффективный (1400-1600 кг/м 3 );
  • эффективный (менее 1100 кг/м 3 ).

Плотность керамического кирпича

Этот кирпич полностью зависит от сорта глины, из которой он сделан, потому что это и есть основной материал для создания его тела. Кирпичи одного и того же размера от разных производителей могут иметь различную массу. Также намного тяжелее весят образцы с укрепленными поверхностями, которые обычно используются для облицовки. Уплотнение может происходить вибрационным методом, либо при помощи кратковременного обжига при огромной температуре. Поверхность такого кирпича больше напоминает керамическую плитку. Стоит также помнить о том, что это сильно влияет на паропроницаемость, поэтому дом из этого материала должен быть оснащён очень качественной системой вентиляции. В глине могут встречаться различные включения, которые также повышают конечную массу изделия. Алюмосиликаты вообще обладают достаточно большой плотностью. Поэтому чем больше в составе кирпича каолинитовых глин, тем больше он будет весить. Также это позволяет увеличить прочность. Определить это внешне нельзя – придётся отправлять образец на экспертизу.

Керамический кирпич, а именно полнотелый широко используют при строительстве стен, как внутренних, так и внешних, а также, возведении несущих элементов конструкции. Пустотелый керамический кирпич используют при возведении облегченных стен и как заполнитель каркасов.

Общепринятый показатель плотности керамического полнотелого кирпича находится на уровне приблизительно 2000 кг/м 3 .

Общепринятый показатель плотности красного пустотелого кирпича находится на уровне приблизительно 1100-1400 кг/м 3 .

Плотность силикатного кирпича

Если говорить о плотности этого кирпича, то она всегда практически одинакова. Дело в том, что единственная характеристика, которая может повлиять на увеличение массы – это размер зерна силикатного песка, из которого изготавливается этот кирпич. Его делают при помощи автоклавного прессования, поэтому конечное изделие зависит от давления, нагнетаемого при технологическом процессе. Это может быть обычно от 8 до 20 атмосфер. При этом расхождение в плотности может быть вплоть до 30%. Большее давление не даст никакого результата, более того, оно может привести к расколу изделия от малейшей нагрузки.

Силикатный кирпич используют при строительстве перегородок и внутренних стен. Но при строительстве несущих стен, этот вид кирпича не рекомендуют использовать, потому как он много весит и не очень прочный, а также ему свойственна высокая теплопроводность. Также не рекомендуется из этого кирпича строить печи, так как при нагревании он деформируется. Но кроме недостатков этот вид материала имеет и ряд преимуществ: дешевизна и возможность получить разные оттенки.

Плотность кирпича из силикатного песка может варьировать в зависимости от плотности сжатия и размера зерна: полнотелого от 1800 до 1950 кг/м 3 , пустотелого(содержит керамзитовый песок) от 1100 до 1600 кг/м 3 .

Плотность полнотелого кирпича

Полнотелый кирпич весит намного больше, чем пустотный вариант. От его температуры обжига существенно зависит и плотность. Одна из причин, почему его не делают полностью глазурованным, является отсутствие в таком случае паровой проницаемости. На него влияет также и сорт глины. Если кирпич пережжен, то он может либо легко обрабатываться каменщиком, либо вообще не подлежать никакой обработке. Плотность его будет очень велика, но свойства будут непредсказуемы. Это будет зависеть от метода остывания после обжига. Обычно охлаждение перегретым паром, а потом вынос на открытый воздух существенно нормализуют плотность изделия.

Читайте так же:
Это частный пляж соси кирпич

Такой кирпич используют в строительстве внешних и внутренних стен, столбов, несущих конструкций, цокольных этажей домов. Также этот материал имеет высокую прочность и морозостойкость, но всё же стены из полнотелого кирпича нуждаются в утеплении.

Общепринятый показатель плотности полнотелого кирпича находится на уровне приблизительно 1600-1900 кг/м 3 , красного полнотелого кирпича — 2100 кг/м 3 .

Плотность пустотелого кирпича

Пустотелый кирпич содержит пустоты 13-50% от внутреннего объема, в результате чего он имеет меньшую прочность. Такой кирпич используют при строительстве наружных облегченных стен и перегородок, а также как заполнитель каркасов зданий. Пустотелый кирпич имеет высокую тепло и звукоизоляцию, легкость материала обеспечивается поризацией.

Общепринятый показатель плотности красного пустотелого кирпича находится на уровне приблизительно 1100-1450 кг/м 3 .

Как видите, плотность кирпича далеко не всегда должна быть очень большой. Это скорее качественный показатель, чем основополагающий для строительства. Часто бывает исключение из правил, когда плотный кирпич при испытаниях на прочность выдерживает куда меньшую нагрузку, чем более легкий образец. А вот прочностные критерии обычно используются для инженерных расчётов намного чаще. Также всё зависит от способа кладки, ведь вязка кирпичей также влияет на распределение нагрузки.

Плотность может учитываться, разве что, транспортными компаниями, которым важно, сколько кубометров и какой массы войдёт в определенный грузовик. Запаянные в пленку кирпичи на поддоне от одной фабрики обычно имеют строго фиксированную массу, поэтому плотность учитывать очень легко. Что касается влажности, то некоторые сорта кирпича, например, облицовочный, вообще к ней невосприимчивы. Плотность может также сильно зависеть от того, как обжигался кирпич. И не всегда большой показатель является критерием качества. Часто избыточная плотность может также служить показателем ломкости. Такой кирпич будет хрупким, как керамическая чашка. Поэтому обычно при строительстве больших объектов каждая партия проверяется на соответствие определенным критериям по опытному образцу.

Точные цифры насчёт плотности кирпича приводить сложно, потому что часто два кирпича от одной фабрики, но из разных партий могут иметь расхождение до 5-10%.

Испытание кирпича и камней керамических

Услуги и цены

Новости

12 окт. 2017 г., 11:34:00

27 окт. 2017 г., 18:23:56

03 нояб. 2017 г., 15:15:00

24 июля 2019 г., 15:12:57

12 авг. 2019 г., 16:09:06

Испытание кирпича и камней керамических

Строительная лаборатория «Тест Констракшн» выполняет услуги по проведению испытаний кирпича и керамических камней на прочность. Испытания производятся в строгом соответствии с действующими ГОСТ как в лабораторных условиях, так и на строительных площадках.

При проведении испытаний проверяются следующие параметры:

  • Прочность;
  • Морозостойкость;
  • Водопоглощение;
  • Средняя плотность.

Прочность кирпича (ГОСТ 8462-85) определяется при проведении испытаний на сжатие и изгиб. Прочность определяется путем испытания серии образцов (10 штук). При испытании образца на изгиб нагрузка прикладывается в середине пролета кирпича и равномерно распределяется по ширине образца. Предел прочности при сжатии определяется на двух целых образцах или из двух его половинок.

Морозостойкость кирпича (ГОСТ 7025-91) определяется при замораживании и оттаивание нескольких образцов в морозильной камере (-15-20 С) в лабораторных условиях. Для контроля образцов по степени повреждения и потере массы отбирают не менее 5 образцов. Для контроля морозостойкости по потере прочности отбирают не менее 20 образцов. Образцы перед проведением испытаний насыщают водой. Замораживание и оттаивание образцов должно проходить в контейнерах с водой. Продолжительность одного цикла замораживания должна быть не менее 4 часов.

Водопоглощение кирпича (ГОСТ 7025-91) . В зависимости от метода водопоглощение может определяться в воде при атмосферном давлении, под вакуумом и в кипящей воде при атмосферном давлении. Определение водопоглощения происходит при насыщения образцов в воде. Образцы перед проведение испытаний предварительно высушивают до постоянной массы. Минимальное количество образцов в серии составляет 3 шт.

Испытание кирпича и камней керамических

Строительная лаборатория «Тест Констракшн» выполняет услуги по проведению испытаний кирпича и керамических камней на прочность. Испытания производятся в строгом соответствии с действующими ГОСТ как в лабораторных условиях, так и на строительных площадках.

При проведении испытаний проверяются следующие параметры:

  • Прочность;
  • Морозостойкость;
  • Водопоглощение;
  • Средняя плотность.

Прочность кирпича (ГОСТ 8462-85) определяется при проведении испытаний на сжатие и изгиб. Прочность определяется путем испытания серии образцов (10 штук). При испытании образца на изгиб нагрузка прикладывается в середине пролета кирпича и равномерно распределяется по ширине образца. Предел прочности при сжатии определяется на двух целых образцах или из двух его половинок.

Читайте так же:
Как очистить масло с кирпича

Морозостойкость кирпича (ГОСТ 7025-91) определяется при замораживании и оттаивание нескольких образцов в морозильной камере (-15-20 С) в лабораторных условиях. Для контроля образцов по степени повреждения и потере массы отбирают не менее 5 образцов. Для контроля морозостойкости по потере прочности отбирают не менее 20 образцов. Образцы перед проведением испытаний насыщают водой. Замораживание и оттаивание образцов должно проходить в контейнерах с водой. Продолжительность одного цикла замораживания должна быть не менее 4 часов.

Водопоглощение кирпича (ГОСТ 7025-91) . В зависимости от метода водопоглощение может определяться в воде при атмосферном давлении, под вакуумом и в кипящей воде при атмосферном давлении. Определение водопоглощения происходит при насыщения образцов в воде. Образцы перед проведение испытаний предварительно высушивают до постоянной массы. Минимальное количество образцов в серии составляет 3 шт.

Техническая характеристика силикатного кирпича

Требования к техническим свойствам силикатного кирпича меняются в зависимости от области его применения, обычно определяемой строительными нормами, неодинаковыми в разных странах.

Прочность при сжатии и изгибе.

В зависимости от предела прочности на сжатие силикатный кирпич подразделяют на марки 75, 100, 125, 150 и 200.

Марка кирпича определяется его средним пределом прочности при сжатии, который составляет обычно 7,5 — 35 МПа. В стандартах ряда стран (Россия, Канада, США), наряду с этим, также регламентируют предел прочности кирпича при изгибе. Пустотелые камни средней плотностью 1000 и 1200 кг/м3 могут иметь марки 50 и 25. В большинстве стандартов предусмотрено определение прочности кирпича в состоянии и лишь в английском стандарте — в водонасыщенном.

В стандартах приведены средняя прочность кирпича данной марки и минимальные значения предела прочности отдельных кирпичей пробы, составляющие 75 — 80% среднего значения.

Водопоглощение — это один из важных показателей качества силикатного кирпича и является функцией его пористости, которая зависит от зернового состава смеси, её формовочной влажности, удельного давления при уплотнении. По 79 водопоглощение силикатного кирпича должно быть не менее 6%.

При насыщении водой прочность силикатного кирпича снижается по сравнению с его прочностью в состоянии так же, как и у других строительных материалов, и это, снижение обусловлено теми же причинами. Коэффициент размягчения силикатного кирпича при этом зависит от его макроструктуры, от микроструктуры цементирующего вещества и составляет обычно не менее 0,8.

Влагопроводность.

Она характеризуется коэффициентом влагопроводности, который зависит от средней плотности кирпича. При рср., примерно равной 1800 кг/м³, и различной влажности имеет следующие значения:

Таблица 1

W, % [pic]*10,9258111416,518,5
0 — 5, кгм²3,66,98,710,214,53073

Морозостойкость.

В нашей стране морозостойкость кирпича, особенно лицевого, является наряду с прочностью важнейшим показателем его долговечности. По 79 установлены четыре марки кирпича по морозостойкости. Морозостойкость рядового кирпича должна составлять не менее 15 циклов замораживания при температуре — 15 °С и оттаивания в воде при температуре 15 — 20 °С, а лицевого — 25, 35, 50 циклов в зависимости от климатического пояса, частей и категорий зданий, в которых его применяют.

Снижение прочности после испытания на морозостойкость по сравнению с водонасыщенными контрольными образцами не должно превышать 20% для лицевого и 35% для рядового кирпича первой категории и соответственно 15 и 20% для кирпича высшей категории качества.

Требования по морозостойкости к кирпичу марок 150 и выше предъявляются только в том случае, если его применяют для облицовки зданий. При этом кирпич должен пройти 25 циклов испытаний без снижения прочности более чем на 20%. По польскому стандарту силикатный кирпич всех видов должен выдерживать не менее 20 циклов замораживания и оттаивания без признаков разрушения. В стандартах Англии, США и Канады для облицовки наружных частей зданий, подвергающихся увлажнению и замораживанию, предусматривается кирпич повышенной прочности (21 — 35 МПа), но его морозостойкость не нормируется.

Морозостойкость силикатного кирпича зависит в основном от морозостойкости цементирующего вещества, которая в свою очередь определяется его плотностью, микроструктурой и минеральным составом новообразований. По данным П. Г. Комохова, коэффициент морозостойкости цементного камня из прессованного вяжущего автоклавной обработки колеблется после 100 циклов от 0,86 до 0,94. При этом с увеличением удельной поверхности кварца с 1200 до 2500 см²/г коэффициент морозостойкости несколько возрастает, а при дальнейшем увеличении дисперсности кварца он снижается.

Читайте так же:
Чем очистить маркер с кирпича

В настоящее время в связи с применением механических захватов для съема и укладки сырца в сырьевую широту стали вводить значительно большее количество дисперсных фракций для повышения его плотности и прочности. Вследствие этого в структуре вырабатываемого сейчас силикатного кирпича заметную роль играют уже микрокапилляры, в которых вода не замерзает, чтозначительно повышает его морозостойкость.

Морозостойкость силикатных образцов зависит от вида гидросиликатов кальция., цементирующих зёрна песка (низкоосновных, высокоосновных или их смеси). После 100 циклов испытаний коэффициент морозостойкости образцов, предварительно прошедших испытания на атмосферостойкость, равнялся для низкоосновной связки 0,81, высокоосновной — 1,26 и их смеси — 1,65.

Изучалась также морозостойкость силикатных образцов, изготовленных на основе песков различного минерального состава. Были использованы наиболее распространенные пески: мелкий кварцевый, истый и с примесью 10% каолин итовой или монтмориллонитовой глины, полевошпатовый, смесь 50% полевошпатового и 50% мелкого кварцевого, крупный кварцевый, содержащий до 8% полевых шпатов.

Кремнеземистая часть вяжущего состояла из тех же, но размолотых пород. Соотношения между активной окисью кальция и кремнеземом в вяжущем назначали исходя из расчета получения цементирующей связки с преобладанием низко- или высокоосновных гидросиликатов кальция или их смеси. Количество вяжущего во всех случаях было постоянным. Однако, морозостойкость силикатных образцов после 100 циклов замораживания и оттаивания зависит не только от типа цементирующей связки, но и от минерального состава песка. Влияние минерального состава песка особенно сказывается при наличии связки из низкоосновных гидросиликатов кальция, когда в смесь введено 10% каолин итовой или монтмориллонитовой глины. Коэффициент морозостойкости при этом падает до 0,82. При повышении основности связки коэффициент морозостойкости составов, наоборот, повышается до 1,5, что свидетельствует о продолжающейся реакции между компонентами в процессе испытаний.

Из приведенных данных видно, что хорошо изготовленный силикатный кирпич требуемого состава является достаточно морозостойким материалом.

Атмосферостойкость.

Под атмосферостойкостью обычно понимают изменение свойств материала в результате воздействия на него комплекса факторов: переменного увлажнения и высушивания, карбонизации, замораживания и оттаивания.

Н. Н. Смирнов исследовал микроструктуру свежеизготовленных и пролежавших в кладке 10 лет образцов силикатного кирпича Кореневского, Краснопресненского, Люберецкого и Мытищинского заводов. Он установил, что в общем случае чешуйки новообразований за 10 лет частично замещаются вторичным кальцитом в результате карбонизации гидросиликатов кальция.

Гаррисон и Бесси испытывали в течение многих лет силикатный кирпич разных классов прочности, зарытый в грунт полностью или наполовину, а также лежащий в лотках с водой и на бетонных плитах, уложенных на поверхность земли. Они установили, что внешний вид кирпичей, лежавших 30 лет в земле с дренирующим и не дренирующим грунтом, мало изменился, но их поверхность размягчилась, а у кирпичей, частично зарытых в землю, открытая часть осталась без повреждений, хотя в некоторых случаях поверхность покрылась мхом.

Состояние кирпичей, находившихся 30 лет на бетонных плитах, зависело от их класса. Так, оказались без повреждений или имели незначительные повреждения 95% кирпичей класса 4 — 5 (28 — 35 МПа), 65% кирпичей класса 3 (21 МПа) и 25% кирпичей класса 2 (14 МПа). Все кирпичи класса 1 (7 МПа) имели повреждения уже через 16 лет. Все кирпичи, лежавшие 30 лет на земле в лотках с водой, получили повреждения, и чем ниже класс кирпича, тем раньше они появлялись: у кирпичей класса 1 — через 8 лет, класса 2 — через 19 лет; класса 3 — через 22 года и для классов 4 — 5 — через 30 лет.

Прочность кирпичей, пролежавших в земле 20 лет, уменьшилась примерно, вдвое. При этом наибольшее снижение прочности наблюдалось у кирпичей, находившихся в недренирующем глинистом грунте, а наименьшее — у кирпичей, наполовину зарытых в землю (стоймя). За 20 лет в зависимости от условий пребывания в грунте карбонизировалось 70 — 80% гидросиликатов кальция, причем в основном карбонизация произошла в первые 3 года. Таким образом, даже при таких исключительно жестких испытаниях силикатный кирпич классов 3 и 4 оказался достаточно стойким.

Общеизвестно, что прочность силикатного кирпича после остывания повышается. Именно поэтому по ранее действовавшему ОСТ 5419 предусматривалось определять его прочность не ранее чем через две недели после изготовления. Были проведены испытания кирпича на образцах, отобранных от большого, числа партий (в общей сложности 3 млн. шт.). По 10 кирпичей из каждой пробы раскалывали пополам, половинки разных кирпичей складывали попарно в определенной последовательности и испытывали сразу, а остальные укладывали на стеллажи и испытывали в той же последовательности через 15 сут. При этом было установлено, что прочность кирпича за это время возросла в среднем на 10,6%, влажность его уменьшилась с 9,6 до 3,5%, а содержание свободной окиси кальция снизилось на 25% первоначального. Таким образом, повышение прочности силикатного кирпича через 15 сут. после изготовления можно объяснить совместным влиянием его высыхания и частичной карбонизации свободной извести.

Читайте так же:
Кирпич м125 вес поддона

Термографическими и рентгеноскопическими исследованиями установлено, что после испытания образцов в климатической камере заметных изменений в цементирующей связке не отмечается, а после карбонизации гидросиликаты кальция превращаются в карбонаты и гель кремнекислоты, являющиеся стойкими образованиями, цементирующими зерна песка.

Таким образом, можно считать, что силикатный кирпич, изготовленный из песков различного минерального состава с использованием тонкомолотого вяжущего, является вполне атмосферостойким материалом.

Стойкость в воде и агрессивных средах.

Стойкость силикатного кирпича определяется степенью взаимодействия цементирующего его вещества с агрессивными средами, так как кварцевый песок стоек к большинству сред. Различают газовые и жидкие среды, в которых стойкость силикатного кирпича зависит от их состава. Из этих данных следует, что силикатный кирпич нестоек против действия кислот, которые разлагают гидросиликаты и карбонаты кальция, цементирующие зерна песка, а также против содержащихся в воздухе агрессивных газов, паров и пыли при относительной влажности воздуха более 65%. Необходимо отметить, что приведенные ориентировочные данные относятся к силикатному кирпичу по 53, требования к качеству которого значительно ниже, чем по 79.

Образцы силикатного кирпича подвергали воздействию проточной и непроточной дистиллированной и артезианской воды в течение более 2 лет. В основном коэффициент стойкости образцов падает в первые 6 мес., а затем остается без изменения. Более высокий коэффициент стойкости — у образцов, содержащих 5% молотого песка, а более низкий — у образцов, в состав которых введено 5% молотой глины. Образцы, содержащие 1,5% молотого песка, занимают промежуточное положение: их коэффициент стойкости составляет примерно 0,8, что следует признать достаточно высоким для рядового силикатного кирпича.

Аналогичные образцы подвергали воздействию сильно минерализованных грунтовых вод, содержащих комплекс солей, а также 5%-ного раствора Na2SO4 и 2,5%-ного раствора MgSO4.

Каждые 3 мес. определяли прочность и коэффициент стойкости образцов, находившихся в различных растворах. В растворе Na2SO4 прочность образцов снижается в основном в течение 9 мес., а к 12 мес. она стабилизируется и в дальнейшем не меняется. В отличие от этого прочность образцов, находившихся в растворе MgSO4, падает все время, и они начинают интенсивно разрушаться уже по истечении 15 мес.

Как правило, коэффициент стойкости образцов, содержащих 5% молотого песка, cоставляет в грунтовых водах и растворе Na2SO4 примерно 0,9, содержащих 1,5% молотого песка — 0,8, тогда как у образцов, в состав которых введено 5% молотой глины, в грунтовой воде и 5%-ном растворе Na2SO4 он достигает 0,7. Следовательно, образцы с молотой глиной нельзя признать достаточно стойкими к воздействию агрессивных растворов, а также мягкой и жесткой воды.

Таким образом, силикатный кирпич, в состав которого введено 5% молотого песка, обладает высокой стойкостью к минерализованным грунтовым водам, за исключением растворов MgSO4.

Жаростойкость.

К. Г. Дементьев, нагревавший силикатный кирпич при различной температуре в течение 6ч, установил, что до 200°С его прочность увеличивается, затем начинает постепенно падать и при 600’С достигает первоначальной. При 800°С она резко снижается вследствие разложения цементирующих кирпич гидросиликатов кальция.

Повышение прочности кирпича при его прокаливании до 200°С сопровождается увеличением содержания растворимой SiO2, что свидетельствует о дальнейшем протекании реакции между известью и кремнеземом.

Основываясь на данных исследований и опыте эксплуатации силикатного кирпича в дымоходах и дымовых трубах разрешается применять силикатный кирпич марки 150 для кладки дымовых каналов в стенах, в том числе от газовых приборов, для разделок, огнезащитной изоляции и облицовки; марки 150 с морозостойкостью Мрз35 — для кладки дымовых труб выше чердачного перекрытия.

Теплопроводность.

Теплопроводность сухих силикатных кирпичей и камней колеблется от 0,35 до 0,7 Вт/(мС) и находится в линейной зависимости от их среднейплотности, практически не завися от числа и расположения пустот.

Испытания в климатической камере фрагментов стен, выложенных из силикатных кирпичей и камней различной пустотности, показали, что теплопроводность стен зависит только от плотности последних. Теплоэффективные стены получаются лишь при использовании многопустотных силикатных кирпичей и камней плотностью не выше 1450 кг/м³ и аккуратном ведении кладки (тонкий слой нежирного раствора плотностью не более 1800 кг/м³, не заполняющего пустоты в кирпиче).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector