Storossproject.ru

Декор и Мебель
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Цемент может излучать радиацию

Защищает ли бетон от радиации — как влияет излучение на стройматериал?

Опасность для всего живого представляют гамма-лучи и нейтронное излучение. Для того, чтобы защититься от вредных излучений, используют радиационно-защитные бетоны. Их эффективность достигается в том случае, если материал, из которого они изготовлены, характеризуется высоким содержанием водорода. Используемые в конструкциях защитных экранов, установленных возле ядерных реакторов, они имеют высокую термостойкость и хорошую теплопроводность, а также низкие показатели коэффициента термического расширения.

Бетон защищает все живое от радиационного излучения. В нем соединяется высокая плотность и достаточно большое количество водорода. Чтобы уменьшить действие радиации возле атомных электростанций, применяют тяжелые бетоны, плотность которых не меньше 2500—7000 кг/м3.

  1. Какие бетоны не пропускают радиацию?
  2. Характеристики защитных свойств бетонов
  3. Как влияет радиация?

Какие бетоны не пропускают радиацию?

Используя атом в мирных целях, нужно, в первую очередь, полностью обеспечить безопасность персонала, работающего на атомных электростанциях возле ядерных реакторов, а также на других вредных предприятиях. В качестве надежной защиты использовали бетоны с наполнителями из материалов с высокой плотностью, а именно: портландцементы, шлакопортцементы, глиноземистые цементы.

Создание новых материалов стало возможным из-за увеличенной доли водорода в ходе производства.

Благодаря увеличению содержания водорода, что способствовало использование большого количества воды вместе с связующим элементом, например, гидросульфоалюминатом кальция, создавались новые соединения. Чтобы улучшить их защитные свойства, начинают вводить добавки, включающие борсодержащие вещества.

Характеристики защитных свойств бетонов

Как основную защиту от радиационного облучения, давно используют тяжелые гидратные бетоны. Для их наполнителей берут следующие материалы:

  • Барит — природный минериал белого цвета — сернокислый барий (BaSO4);
  • Железные руды:
    • магнетит (Fe304);
    • красный железняк (Fe203);
    • лимонит (2Fe203).
  • Металлолом.
Читайте так же:
Раствор цемента для фундамента забора

Материалы, используемые при возведении АЭС, должны иметь повышенную плотность.

Плотность на заполнителе из барита — 38000 кг/м3, на песке и щебне — 2600—4000 кг/м3, а на отходах из чугуна, стали, крупного лома (дробь, крошка, скрап) — 5000—7000 кг/м3. Поэтому, изготовляя их, нужно учитывать влияние облучения на разные материалы. Существует вероятность, что это может нарушить состав и привести к разрушению всей конструкции. Это нужно учитывать еще при планировке и проектировании. Конструкционные, жаростойкие и теплоизоляционные бетоны, которые используют при строительстве атомных станций, тоже должны соответствовать этим требованиям.

Как влияет радиация?

Известно, что радиация способна уничтожить не только все живое, но и защиту, которая была возведена для безопасности. Цемент, вода, щебень, песок, камень, минеральные заполнители не могут создать 100% защиты, именуемой «иммунитет». Излучение способно изменить даже атомную структуру, снизить стойкость к химическим разрушениям использованого материала, привести к дефомации, а затем — к полному уничтожению. Это касается не только прочности какого-то одного материала, а и балок, перекритий, что поставит под угрозу всю структурную целостность сооружения.

Бетоны для защиты от радиации

Из всех радиоактивных излучений наибольшей проникающей способностью обладают у-излучение и нейтроны. Способность материала поглощать у-излучение пропорциональна его плотности. Для ослабления потока нейтронов в материале, наоборот, должны присутствовать элементы с малой атомной массой, как, например, водород. Бетон является эффективным материалом для биологической защиты ядерных реакторов, поскольку в нем удачно сочетаются при сравнительно низкой стоимости высокая плотность содержание определенного количества водорода в химически связанной воде. Для уменьшения толщины защитных экранов при возведении атомных электростанций и предприятий по производству изотопов наряду с обычными применяют особо тяжелые бетоны со средней плотностью от 2500 до 7000 кг/м3 и гидратные бетоны с высоким содержанием химически связанной воды. С этой целью используют тяжелые природные или искусственные заполнители: магнетитовые, гематитовые или лимонитовые железные руды, барит, металлический скрап, свинцовую дробь и др.
Для получения гидратных бетонов эффективными являются лимонит, серпентинит и другие материалы, обладающие наряду с высокой плотностью и значительным содержанием химически связанной воды. В качестве вяжущих в особо тяжелых и гидратных бетонах применяют портланд- и шлакопортландцементы. Возможно применение цемента специального назначения, образующего при твердении повышенное содержание гидросульфоалюмината, связывающего значительное количество воды. В гидратных бетонах можно использовать также глиноземистый и гипсоглиноземистый цементы, связывающие большее количество воды, чем портландцемент. Для улучшения защитных свойств в гидратные бетоны вводят добавки, повышающие содержание водорода — карбид, бор, хлорид лития и другие добавки, в состав которых входят легкие элементы.
Кроме улучшенных защитных свойств, бетон, применяемый для устройства экранов ядерных реакторов, должен обладать и другими особенностями: повышенной температуростойкостью, высокой теплопроводностью, низкими значениями усадки, коэффициента термического расширения и ползучести.
Особо тяжелые бетонные смеси склонны к расслоению вследствие значительного различия между плотностями цементного теста и заполнителей. Для предотвращения расслоения рекомендуется такие смеси перевозить в автобетоносмесителях, применять методы раздельного бетонирования и т. д.
При потоках нейтронов высокой интенсивности, характерных для некоторых реакторов на быстрых нейтронах, может возникнуть необходимость в использовании радиационностойких бетонов.
В результате воздействия ионизирующего излучения в структуре бетона могут происходить качественные изменения, характер и глубина которых зависят от свойств бетона, вида исходных материалов и дозы облучения. При определении радиационной стойкости материалов учитываются плотность потока частиц, интенсивность излучения, поглощенная доза излучения. Плотность потока частиц или квантов характеризуется отношением числа частиц, проникающих в сферу элементарного объема в единицу времени, к площади проекции сферы (квант в сек. на кв. метр — с»1 м»2). В отличие от плотности интенсивность излучения — удельная величина энергии (Вт/м2). Поглощенная доза излучения равна отношению поглощенной энергии к массе облучаемой среды (Дж/кг). Например, плотность потока нейтронов, излучаемых ядерным реактором, достигает 5 1017с

Читайте так же:
Как снять цементное молочко с поверхности бетона вручную

2, изотопным источником -10 — 108с 1м»2. Интенсивность излучения составляет соответственно 104 и 10″6 Вт/м2. Доза излучения, поглощенная бетоном конструкций, расположенных за корпусом ядерного реактора за 30 лет его службы составляет 1011 — 1012 Дж/кг.
Радиационное облучение вызывает термическую усадку цементного камня, которая возрастает по мере увеличения дозы облучения. При этом температура увеличивается до 350°С и происходит его частичное обезвоживание. Деформации при облучении Цементного камня значительно превосходят деформации вследствие испарения воды при разогреве цементного камня. Усадке способствуют радиационно-химические реакции, в результате которых возможно образование химически активных частиц, взаимодействующих друг с другом. При облучении происходит радиолиз химически связанной, адсорбционной и свободной воды, цементного камня, в результате чего выделяются в газообразном состоянии кислород и водород.
Радиолиз воды сопровождается снижением прочности цементного камня, развитием деформаций ползучести.
При облучении бетона характерны снижение плотности и увеличение линейных размеров зерен заполнителей. Возможен также переход минералов из кристаллического в аморфное состояние, что также сопровождается деформациями расширения. По мере облучения происходит образование и накопление различных дефектов кристаллической решетки минералов, слагающих заполнители. Наибольшие изменения при радиационном воздействии характерны для крупнокристаллических глубинных кислых магматических горных пород. С увеличением содержания в структуре горных пород аморфных фаз и уменьшением размеров кристаллов радиационная стойкость пород возрастает.
Модуль упругости бетона по мере повышения дозы облучения снижается вследствие накопления структурных дефектов в заполнителях и цементном камне. Установлено, что при значительных дозах облучения предел прочности бетона на сжатие снижается в 4 раза, а на растяжение более чем в 2 раза.
Для радиационностойких бетонов предпочтительно применять высококремнеземистые портландцементы с пониженным содержанием алюминатов и алюмоферритов. В условиях облучения эффективно использование мелкозернистых бетонов.

Читайте так же:
Укрепление откосов бетонными блоками

Авторы: Л. И. Дворкин, О. Л. Дворкин

  • В системе «М350» на бетон в Волоколамске цены получаются по итогу конкуренции между качественными РБУ поблизости от объекта.
  • Для чего нужен автомиксер с насосом для подачи бетона и принципы его работы.
  • Чтобы получить интересные заказы на бетон, заводы в Долгопрудном, когда это возможно, стараются предложить сп
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector